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Notice 

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights 
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any 
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of 
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing  any 
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual 
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual 
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its 
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the 
use of this specification. 
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Foreword 

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and 
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 
and intends to contribute its results to the appropriate formal standards bodies.  

The members of FIPA are individually and collectively committed to open competition in the development of agent-based 
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership, 
governmental body or international organization without restriction. In particular, members are not bound to implement or 
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.  

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification 
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification 
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their 
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA 
specifications may be found in the FIPA Glossary. 

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 
specifications and upcoming meetings may be found at http://www.fipa.org/. 
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1 Introduction 
This specification describes how the Resource Description Framework (RDF - see [W3crdf]) can be used as content 
language in a FIPA message. Although FIPA does not require that a content language is able to represent actions1, a lot 
of communicative acts require actions in their content. Therefore, we will show how RDF schemas can be defined 
extending its model to express:  
 
• Objects which are constructs that represent an identifiable entity (be it abstract or concrete) in the domain of 

discourse, 
 
• Propositions which are statements expressing that some sentence in a language is true or false, and, 
 
• Actions which try to express an activity that can be carried out by an object. 
 
By means of existing mechanisms in RDF (schema definitions), modular RDF extensions will be proposed, based on the 
fipa-rdf0 content language. Those extensions will be able to tackle for example rules, logic algebra constructs, and 
others. These extensions can then be labelled as fipa-rdf1, fipa-rdf2, etc.  
 
The general motivation behind this approach is to enable and ease the use of RDF Schemas emerging on the Web such 
as CC/PP, and to define one common standard approach here to increase the level of interoperability. The main strengths 
of the RDF language are in its extensibility, reusability and simplicity. Another advantage of RDF is that data and 
schemas are exchanged in a similar way.  
 
The RDF model proposes the eXtensible Markup Language (XML - see [W3Cxml]) as an encoding syntax, but does not 
prevent anyone from using alternative encoding schemes. All fipa-rdf examples will therefore use an XML encoding, 
although, in principle, other encoding schemes could be used. 
 

1.1 A Summary of RDF 
The RDF framework is based on an entity-relationship model. The RDF Data Model is described by means of resources, 
properties and their values. A specific resource together with one or more named properties plus the values of these 
properties is an RDF description (a collection of RDF statements).  
 
In addition to the RDF Data Model, the RDF Schemas (see [W3Crdfsch]) specification provides a typing system for the 
resources and properties used in the RDF data. It defines concepts such as classes, subclasses, properties or sub-
properties. It also allows expressing constraints. Both the RDF Data Model and RDF Schema propose XML as a 
serialization syntax.  
 
RDF is a "foundation for processing meta-data in the way that it provides interoperability between applications that 
exchange machine-understandable information." This suggests that RDF could be most useful to facilitate knowledge 
sharing and exchange between agents.  
 

                                                 
1 A content language must be able to express at least any of propositions, objects or actions. 
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2 RDF as a FIPA Content Language 
To be able to use RDF as a content language for FIPA ACL messages, we have to explore how objects, propositions and 
functions can be expressed in RDF, without endangering key extensibility inherent to the language. On the other hand, we 
will try to preserve RDF's simplicity, which is crucial for the success of languages on the Internet.  
 
We suggest to use the name fipa-rdf0, for the combined use of RDF and the basic schemas which define the 
extensions needed for FIPA. 
 

2.1 Objects 
Taking the above into account, it is obvious to see an analogy between an ACL object and an RDF resource, since both 
are defined as descriptions of a certain identifiable entity. This enables us to use RDF resource identifiers and references 
as ACL object identifiers and references. This means that to resolve an RDF reference, we can use a the FIPA 
communicative act query-ref (see [FIPA00054]), which will then be followed by an 'inform' message, describing this 
object. 
 

2.2 Propositions 
In the same context it seems logical to model ACL propositions using RDF statements. An RDF statement is composed 
out of three parts: subject (resource), predicate (property) and object (literal/value). As an example, consider the sentence 
"W. Richard Stevens is the author of TCP/IP Illustrated". The RDF components of this proposition are the subject (TCP/IP 
Illustrated), the predicate (Author) and the object (W. Richard Stevens). This sentence/statement can then be described in 
RDF in the following manner:  
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:s="http://description.org/schema/"> 
 
  <rdf:Description ID="TCP/IP Illustrated"> 
    <s:author>W. Richard Stevens</s:author> 
  </rdf:Description> 
</rdf:RDF> 
 
Figure 1 represents this in RDF graph form. This way we have a starting point to state logical expressions in our content. 
Taking this one step further, we can say that by expressing this statement, we indicate our belief in this statement. In this 
way we can say that we always assume that an RDF statement expresses a belief. This approach would be sufficient in 
any context where the level of logic involved is limited. 
 

 TCP/IP Illustrated W. Richard Stevens a:author 
 

 
Figure 1: A Proposition as an RDF Statement 

 
To overcome this shortcoming however, we will explain how logical belief or disbelief of a certain statement could be 
expressed explicitly using RDF. To express that we believe a statement to be true or false, we have to model the original 
statement as a reified statement, that is, a resource with four predefined properties: 
 
• The subject property identifies the resource being described by the modelled statement; that is, the value of this 

property is the resource about which the original statement was made. 
 
• The predicate  property identifies the property of the original statement; that is, the value is the specific property in 

the original statement. 
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• The object property identifies the property value in the original statement; that is, the value is the object in the original 
statement. 

 
• The value of the type property describes the type of the new resource. All reified statements are instances of 

rdf:Statement. 
 
A new resource with the above four properties represents the original statement and can both be used as the object of 
another statement and have additional statements made about it. The resource with these four properties is not a 
replacement for the original statement, but it is a model of the statement. 
 
By extending the RDF syntax model with the following elements, a means to express belief or disbelief of a statement is 
allowed (the complete schema of the RDF extensions can be found in Section 4.1, RDF Schemas for FIPA RDF 1): 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"> 
 
  <rdfs:Class rdf:ID="http://www.fipa.org/schemas#Proposition"> 
    <rdfs:label xml:lang="en">proposition</rdfs:label> 
    <rdfs:label xml:lang="fr">proposition</rdfs:label> 
    <rdfs:comment>This describes the set of propositions</rdfs:comment> 
    <rdfs:subClassOf rdf:resource= 
     "http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> 
  </rdfs:Class> 
 
  <rdfs:ConstraintProperty rdf:ID="http://www.fipa.org/schemas#belief"> 
    <rdfs:label xml:lang="en">belief</rdfs:label> 
    <rdfs:label xml:lang="fr">acte</rdfs:label> 
    <rdfs:domain rdf:resource="#Proposition"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
</rdf:RDF> 
 
Using this method we can easily describe ACL propositions in RDF. As an example, the following proposition will be 
modelled: "The statement 'W. Richard Stevens is the author of TCP/IP Illustrated' is true". One way to do this is as 
follows: 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:fipa=http://www.fipa.org/schemas/fipa-rdf0#"> 
 
  <fipa:Proposition> 
    <rdf:subject>TCP/IP Illustrated</rdf:subject> 
    <rdf:predicate rdf:resource="http://description.org/ schema#author"/> 
    <rdf:object>W. Richard Stevens</rdf:object/> 
    <fipa:belief>true</fipa:belief> 
  </fipa:Proposition> 
</rdf:RDF> 
 
Expressing that the same statement is false, is equally easy by replacing the value 'true' with 'false'. The RDF graph 
representation of the 'false' statement is presented in Figure 2. 
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 TCP/IP Illustrated 

W. Richard Stevens 

rdf:subject 

 

rdf:obj
ect 

s:author rdf:Statement

false 

rdf:predicate rdf:type 

fipa:belief 

 
 

Figure 2: Explicit Logical Proposition in RDF 
 

2.3 Actions 
An action expresses an activity, carried out by an object. There are three different properties related to an 'action': 
 
• An act identifies the operative part of the action; it can serve to identify the type of act or merely to describe the act. 

In the latter case specific types of action classes can be derived from the Action class.  
 
• An actor identifies the entity responsible for the execution of the action, that is, the value is the specific entity which 

will/can/should perform the act (often the receiver, but possibly another agent/entity under "control" of the receiver).  
 
• An argument identifies an (optional) entity which can be used for the execution of the action; that is, the value is 

entity which is used by the actor to perform the act.  An action can have multiple arguments. 
 
When looking at an action this way, there is a structural analogy with a RDF statement. 
 
To model an action, the RDF syntax model can be extended with a new RDF type fipa:Action which has these 
properties. As an example, the following action will be modelled: "John opens door1 and door2".  In this small example, 
the properties are the act (Open), the actor (John) and the arguments (door1 and door2). In RDF, this action can then be 
described as: 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#"> 
 
  <fipa:Action rdf:ID="JohnAction1"> 
    <fipa:actor>John</fipa:actor> 
    <fipa:act>open</fipa:act> 
    <fipa:argument> 
      <rdf:bag> 
        <rdf:li>door1</rdf:li> 
        <rdf:li>door2</rdf:li> 
      </rdf:bag> 
    </fipa:argument> 
  </fipa:Action> 
</rdf:RDF> 
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According to the RDF specification, the resource type defined in the schema corresponding to the type property can be 
used directly as an element name when the Description element contains a type property. So, a shorter version of the 
above example could be written as follows: 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:fipa="http://www.fipa.org/schemas#"> 
 
  <fipa:Action rdf:ID="JohnAction1"> 
    <fipa:actor>John</fipa:actor> 
    <fipa:act>open</fipa:act> 
    <fipa:argument> 
      <rdf:bag> 
        <rdf:li>door1</rdf:li> 
        <rdf:li>door2</rdf:li> 
      </rdf:bag> 
    </fipa:argument> 
  </fipa:Action> 
</rdf:RDF> 
 

The model above still lacks the ability to state whether some action has finished or what the result is of the action. this 
can be solved by simply adding extra properties to the description of the action. 
 
As an example, suppose Mary requests John to open door 1 and door 2 and then wants John to inform her if he performed 
the action and what the result is. This little scenario exists of two messages: 
 
• Request from Mary to John containing the description of the action, and, 
 
• Inform from John to Mary, referring to the action and stating the completion of the action. 
 
Using FIPA ACL combined with RDF content, the first messages could be expressed as: 
 
(request 
  :sender Mary 
  :receiver John 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
             xmlns:fipa="http://www.fipa.org/schemas#"> 
 
      <fipa:Action rdf:ID="JohnAction1"> 
        <fipa:actor>John</rdf:actor> 
        <fipa:act>open</rdf:act> 
        <fipa:argument> 
          <rdf:bag> 
            <rdf:li>door1</rdf:li> 
            <rdf:li>door2</rdf:li> 
          </rdf:bag> 
        </fipa:argument> 
      </fipa:Action> 
    </rdf:RDF>) 
  :language fipa-rdf0) 
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John 

 

fipa:argument 

JohnAction 

fipa:actor 

fipa:Action fipa:act rdf:type 

rdf:Bag 
rdf:type 

door1 

rdf:_2 rdf:_1 

door2 

open  
 

 
Figure 3: Example of an Open Action 

 
And the subsequent reply message could be: 
 
(inform 
  :sender John 
  :receiver Mary 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
             xmlns:fipa="http://www.fipa.org/schemas#"> 
 
      <rdf:Description about="#JohnAction1"> 
        <fipa:done>true</fipa:done> 
        <fipa:result>doors closed</fipa:result> 
      </rdf:Description> 
    </rdf:RDF> ) 
  :language fipa-rdf0) 
 
Note the ability offered by RDF to include previous actions by means of a reference instead of repeating the whole action. 
The RDF graph representation of the complete action description is presented in Figure 3. 
 

 JohnAction 

false 

fipa:done 

doors closed

fipa:result 

 
 

Figure 4: Result of an Open Action 
 

2.4 Action Implementations 
Different possible scenarios can be distinguished between when using the RDF actions. One possible usage is when a 
software designer describes in documentation (that is, in the RDF schemas in rdfs:comment) what is meant by a 
particular action; it is left to the implementer to decide which functions will be called. In another scenario, a more explicit 
description of the semantics might be needed by linking the action with some programming language. This section deals 
with the latter case. 
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When an agent does not know how to perform an action and needs a more explicit representation of this action, the 
sender agent can specify the code which implements the action. For this purpose a new property for actions is 
introduced, called implementedBy, which has a resource of the type Code as property its value. 
 
A first possibility is that the property implementedBy contains a reference (a URI) to an external software module 
written in a specific programming language. For this purposes the Code resource therefore has a property language and 
a property code-uri. For reasons of simplicity, it is assumed that the language used is either Java or a scripting 
language such as JScript or ECMAscript. So, the property code-uri is a reference to the location of code where the 
method or function can be found (for Java a code base followed by a class name).  
 
When a Java class is referenced, code-uri can contain the Java code-base. The receiving agent can then download this 
class, instantiate it (if needed), and perform the required action (or not). When a non-static class is being referred, we 
assume that there is always a zero-argument constructor (cfr. the requirement for JavaBeans).  
 
In addition, we assume that there always exists a one-to-one correspondence between the FIPA arguments and fipa 
result property, into the method's arguments resp. return value. When multiple arguments are used, and the sequence of 
those is important, one should use the rdf:Seq container to separate them.  
 
As an example, suppose agent 'Student' requests agent 'Mathematician' to find the next prime following after '7'. The 
request message is as follows (see Figure 5): 
 
(request 
  :sender Student 
  :receiver Mathematician 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
             xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#"> 
 
      <fipa:Action rdf:ID="studreq01"> 
        <fipa:actor>Mathematician</fipa:actor> 
        <fipa:act>findNextPrime</fipa:act> 
        <fipa:argument>7</fipa:argument> 
          <fipa:implementedBy> 
            <fipa:Code> 
            <fipa:language>Java</fipa:language> 
              <fipa:code-uri> 
                http://www.mathagent.com/math.utility.prime 
              </fipa:code-uri> 
            </fipa:Code> 
          </fipa:implementedBy> 
        </fipa:argument> 
      </fipa:Action> 
    </rdf:RDF> ) 
  :language fipa-rdf0) 
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MathAgent 
fipa:argument 

fipa:actor

fipa:Action studreq01 fipa:act rdf:type 

7 

findNextPrime 

http://www.mathagent.com/math.utility.prime 

fipa:implementedBy 

 
 

Figure 5: Actions and Implementation References 
 
In the previous example, it is assumed that there exists a function or method in the static class 
math.utility.prime.class with the same name of the FIPA act (findNextPrime). If the name of the method is 
different from the FIPA act's name, then the  method name should be included after the hash sign (#) of the property value 
code-uri. For example:  
 
<fipa:implementedBy> 
  <fipa:Code> 
    <fipa:language>Java</fipa:language> 
    <fipa:code-uri >         
      http://www.mathagent.com/math.utility.prime#nextPrime 
    </fipa:code-uri> 
  </fipa:Code> 
</fipa:implementedBy> 
 

The Mathematician agent could reply with: 
 
(inform 
  :sender Mathematician 
  :receiver Student 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
             xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#"> 
 
      <fipa:Action rdf:about="#studreq01"> 
        <fipa:done>true</fipa:done> 
        <fipa:result>11</fipa:result> 
      </fipa:Action> 
    </rdf:RDF>) 
  :language fipa-rdf0) 

 
 studreq01 

11 

fipa:result 

true 

fipa:done

 
 

Figure 6: Result of the findNextPrime Action 
 
Sometimes, multiple implementations can be associated with one specific action so the implementedBy property can 
contain an rdf:Alt container of Code classes. In some cases, the method implementation of the code may need to 
refer to values of the RDF data model and conventions are needed to establish a mapping between the RDF data and 
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(Java) object model. Although no real standards already exist, several initiatives are taking off to define such a binding. 
Examples include:  
 
• DATAX: the Java interface (see [DATAX]), 
 
• GINF: the interfaces specified in the Generic Interoperability Framework (see [Melnik99]), 
 
• 3AP: the RDF-Java mapping as used in Alcatel's 3AP platform, and, 
 
• Other Java API's have been suggested on the RDF-DEV mailing lists. 
 
The following example shows the use of the binding property: 
 
(request 
  :sender agent-dealer 
  :receiver agent-carshop 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
             xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#"> 
 
      <fipa:Action rdf:ID="price-update1"> 
        <fipa:actor>agent-carshop</rdf:actor> 
        <fipa:act>addNewPrices</rdf:act> 
        <fipa:implementedBy> 
          <fipa:Code> 
            <fipa:language>Java</fipa:language> 
            <fipa:binding>DATAX</fipa:binding> 
            <fipa:codeURI> 
              http://www.carshop.com/bin/CarStock 
            </fipa:codeURI> 
          </fipa:Code> 
        </fipa:implementedBy> 
      </fipa:Action> 
    </rdf:RDF> ) 
  :language fipa-rdf0) 
 

The file CarStock.java could look as follows: 
 
import com.muze.datax.*; 
import com.muze.datax.rdf.*; 
 
public class CarStock { 
 
public CarStock() { } 
 
void addNewPrices() { 
  EntitySet entities = new RDFReader().read("carstock.rdf"); 
  DATAXFactory f = new DefaultDATAXFactory(); 
  Iterator it = entities.iterator(); 
 
  while (it.hasNext()) { 
    Entity e = (Entity)it.next(); 
    Property p = e.getProperty("http://www.carshop.com/schemas#price"); 
    Float price = Float.valueOf(p.getValue()); 
    p-new = f.createProperty(Property.ATTRIBUTE, 
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            "newprice", 1.05*price.floatValue()); 
    e.add(p-new); 
  } 
} 
 

In this example, the car dealer requests the car shop to attach new prices to their car stock: the new prices should 
become 5% higher than the old ones. In the Java file, the DATAX model is used to map the RDF data model into Java 
objects.  
 
A second possibility is that the  fipa:implementedBy property includes code which is directly embedded as a (Java) 
script. The property fipa:script of the resource fipa:Code can be used these for purposes. Once again, 
conventions are needed to map the RDF data and the Java (script) model. For an example, see Section 3.3, . 
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3 Exchange of Rules Extensions 
This module allows the expression and exchange of rules, based on the FIPA-RDF0 model.  
 

3.1 Introduction 
Using the fipa-rdf1 language, agents can exchange knowledge about rules. An agent can inform another agent about 
one of its own "house" rules, but may also request to fire a particular rule on (a subset of) their knowledge base. In 
general, we leave it up to the implementer of the agent how to use the exchanged rules. The fipa-rdf1 builds on top of 
the fipa-rdf0 schemas, and provides extra schema information for expressing rules.  
 
We will distinguish between two different approaches for dealing with rules:  
 

1. Rules exchanged as XML/RDF encoded expressions. 
 

2. Rules exchanged as pieces of programming code (scripts or Java classes). 
 

3.2 Rules in XML/RDF 
An RDF rule consists of two basic components: a selection part and a manipulation part, which applies to all RDF 
resources contained in the selection. To express the selection, an RDF notation for this purpose is chosen. To express 
the manipulation part, which allows to change property values of the selected resources, we will simply use the RDF data 
model itself. 
 
In order to select parts of the RDF data resources, one can use an RDF query language. No real standards do exist at the 
moment, but various specifications are available which define how to query/select particular RDF resources including:  
 
• RDF Query Specification (see [W3Crdfquery]), and, 
 
• A Query and Inference Service for RDF (see [Decker98]). 
 
The selection results will be put in an RDF container, identified by the property fipa:selection-result of the rule. 
The manipulation part will then give an RDF description for all resources contained in the container of the selection 
results. The following is an example of an RDF encoded rule:  
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#" 
         xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf1#" 
         xmlns:car="http://www.cars.org/schemas#" 
         xmlns:rdfq="http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html"> 
 
  <fipa:Rule rdf:ID="categorizeCars1"> 
    <fipa:selection-result rdf:ID="speedycars"/> 
      <fipa:selection> 
        <rdfq:rdfquery> 
          <rdfq:From eachResource="http://www.carshop.com/res/"> 
            <rdfq:Select> 
              <rdfq:Condition> 
                <rdfq:equals> 
                  <rdfq:Property name="rdf:type"/> 
                  <rdfq:String>  
                    http://www.cars.org/schemas#Car 
                  </rdfq:String> 
                </rdfq:equals> 
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                <rdfq:greaterThan> 
                  <rdfq:Property name="http://www.cars.org/schemas#speed"/> 
                  <rdfq:Integer>200</rdfq:Integer> 
                </rdfq:greaterThan> 
              </rdfq:Condition> 
            </rdfq:Select>  
          </rdfq:From> 
        </rdfq:rdfquery> 
      </fipa:selection> 
      <fipa:manipulation> 
        <rdf:Description rdf:aboutEach="speedycars"> 
          <car:category>speed-car</car:category> 
        </rdf:Description> 
      </fipa:manipulation> 
    </fipa:selection-result> 
  </fipa:Rule> 
</rdf:RDF> 
 

In the above example, first all cars are selected from all resources contained in http://www.carshop.com/res/ for 
which the maximum speed exceeds 200 (km/h). In the manipulation part, for all resources contained in the resulting 
collection, the value of the property car:category is set to speed-car.  
 

3.3 Exchanging Rules as Programming Code 
A rule is directly expressed as some piece of code (which presumably also selects nodes, and subsequently manipulates 
the RDF data). For this purpose, the property fipa:implementedAs is attached to the fipa:Rule class, as the 
property implementedBy was attached to a fipa:Action class.  
 
The following example states that "for all cars for which the property speed exceeds 200 (km/h), the property category 
should be set to race-car: 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#" 
         xmlns:car="http://www.cars.org/schemas#" 
         xmlns="http://www.fipa.org/schemas/fipa-rdf1#"> 
 
  <fipa:Rule rdf:ID="categorizeCars2"> 
    <fipa:implementedAs> 
      <fipa:Code> 
        <fipa:language>ECMAScript</fipa:language> 
        <fipa:binding>3AP</fipa:binding> 
        <fipa:script> 
          NodeSelection selection = new NodeSelection(""); 
          Iterator it = selection.iterator(); 
 
          while (it.hasNext()) { 
            Node n = (Node)it.next(); 
 
            if ((n.getProperty("speed").getValue() > 200) & 
               (n.getProperty("type").getValue(). 
               equals("http://www.cars.org/schemas#Car")) { 
                 n.getProperty("category").setValue("race-car"); 
            } 
          } 
        </fipa:script> 
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      </fipa:Code> 
    </fipa:implementedAs> 
  </fipa:Rule> 
</rdf:RDF> 
 

This script uses the 3AP APIs to map the RDF data with the Java object model.  
 

3.4 Using Rules with FIPA Communicative Acts 
An agent may request another agent to fire a specific rule to his knowledge base.  
 
(request 
  :sender i 
  :receiver j 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#" 
             xmlns="http://www.fipa.org/schemas/fipa-rdf1#"> 
 
      <FireRule> 
        <rdf:type rdf:resource="http://www.fipa.org/schemas#Action"/> 
        <argument rdf:resource="#categorizeCars2"> 
      </FireRule> 
    </rdf:RDF> ) 
  :language fipa-rdf1 ) 
 

The rules engine will then have an impact on the properties of all car instances.  
 
Another use is that an agent informs another agent about its (implicit) belief in the correctness of a rule:  
 
(inform 
  :sender i 
  :receiver j 
  :content ( 
    <?xml version="1.0"?> 
    <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#" 
             xmlns="http://www.fipa.org/schemas/fipa-rdf1#"> 
 
      <fipa:Rule about="#categorizeCars2"/> 
    </rdf:RDF> ) 
  :language fipa-rdf0) 
 

The receiving agent may then decide to apply the rule (or not). 
 

3.5 Further Remarks 
In practice, the RDF content in a FIPA message may look quite verbose. However, this problem can be tackled in different 
ways: 
 
• The RDF specification itself has been foreseen in a number of alternative 'abbreviated forms'. 
 
• Binary encodings can be used instead, as defined by the XML Token specification (see [W3Cxml]). 
 
• Some parts of the content can be defined in advance by unique XML identifiers (URIs) and then used in subsequent 

messages. This may be especially useful when the negotiation focuses only on one specific service parameter. 
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To support the latter mechanism of cross-referencing parts of the RDF content, we suggest the usage of the query-ref 
and inform (see [FIPA00046]) FIPA communicative acts.  
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4 Examples of Use 
A number of companies and organisations in the FACTS project (see [FACTS]) have used FIPA RDF as content language 
for agent-based provisioning of virtual private networks. 
 

4.1 RDF Schemas for FIPA RDF 0 
The RDF schema needed for using fipa-rdf0 (for expressing actions and propositions) is as follows:  
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"> 
 
  <rdfs:Class rdf:ID="Proposition"> 
    <rdfs:label xml:lang="en">proposition</rdfs:label> 
    <rdfs:label xml:lang="fr">proposition</rdfs:label> 
    <rdfs:subClassOf rdf:resource= 
      "http://www.w3c.org/1999/02/22-rdf-syntax-ns#Statement"/> 
    <rdfs:comment>This describes the set of propositions</rdfs:comment> 
  </rdfs:Class> 
 
  <rdfs:ConstraintProperty rdf:ID="belief"> 
    <rdfs:label xml:lang="en">belief</rdfs:label> 
    <rdfs:label xml:lang="fr">acte</rdfs:label> 
    <rdfs:domain rdf:resource="#Proposition"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:Class rdf:ID="Action"> 
    <rdfs:label xml:lang="en">action</rdfs:label> 
    <rdfs:label xml:lang="fr">action</rdfs:label> 
    <rdfs:subClassOf rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Resource"/> 
    <rdfs:comment>This describes the set of actions</rdfs:comment> 
  </rdfs:Class> 
 
  <rdfs:ConstraintProperty rdf:ID="act"> 
    <rdfs:label xml:lang="en">act</rdfs:label> 
    <rdfs:label xml:lang="fr">acte</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="actor"> 
    <rdfs:label xml:lang="en">actor</rdfs:label> 
    <rdfs:label xml:lang="fr">acteur</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="argument"> 
    <rdfs:label xml:lang="en">argument</rdfs:label> 
    <rdfs:label xml:lang="fr">argument</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
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  <rdfs:ConstraintProperty rdf:ID="done"> 
    <rdfs:label xml:lang="en">done</rdfs:label> 
    <rdfs:label xml:lang="fr">fini</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="result"> 
    <rdfs:label xml:lang="en">result</rdfs:label> 
    <rdfs:label xml:lang="fr">resultat</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="implementedBy"> 
    <rdfs:label xml:lang="en">implementedBy</rdfs:label> 
    <rdfs:label xml:lang="fr">implemente par</rdfs:label> 
    <rdfs:domain rdf:resource="#Action"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:Class rdf:ID="Code"> 
    <rdfs:label xml:lang="en">code</rdfs:label> 
    <rdfs:label xml:lang="fr">code</rdfs:label> 
    <rdfs:comment>This describes the code implementation</rdfs:comment> 
  </rdfs:Class> 
 
  <rdfs:ConstraintProperty rdf:ID="language"> 
    <rdfs:label xml:lang="en">language</rdfs:label> 
    <rdfs:label xml:lang="fr">langue</rdfs:label> 
    <rdfs:domain rdf:resource="#Code"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="binding"> 
    <rdfs:label xml:lang="en">binding</rdfs:label> 
    <rdfs:label xml:lang="fr">binding</rdfs:label> 
    <rdfs:domain rdf:resource="#Code"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="code-uri"> 
    <rdfs:label xml:lang="en">code-uri</rdfs:label> 
    <rdfs:label xml:lang="fr">code-uri</rdfs:label> 
    <rdfs:domain rdf:resource="#Code"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="script"> 
    <rdfs:label xml:lang="en">script</rdfs:label> 
    <rdfs:label xml:lang="fr">script</rdfs:label> 
    <rdfs:domain rdf:resource="#Code"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/> 
  </rdfs:ConstraintProperty> 
</rdf:RDF> 
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4.2 RDF Schemas for FIPA RDF 1 
The RDF schemas corresponding to fipa-rdf1 are specified as follows (extending the above schemas): 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#" 
         xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#"> 
 
  <rdfs:Class rdf:ID="Rule"> 
    <rdfs:label xml:lang="en">rule</rdfs:label> 
    <rdfs:label xml:lang="fr">regle</rdfs:label> 
  </rdfs:Class> 
 
  <rdfs:ConstraintProperty rdf:ID="selection"> 
    <rdfs:comment>The selection part </rdfs:comment> 
    <rdfs:domain rdf:resource="Rule"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="manipulation"> 
    <rdfs:comment>The manipulation part</rdfs:comment> 
    <rdfs:domain rdf:resource="Rule"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="selection-result"> 
    <rdfs:comment> 
      Identifies the container filled with selection results 
    </rdfs:comment> 
    <rdfs:domain rdf:resource="Rule"/> 
    <rdfs:range rdf:resource= 
      "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Bag"/> 
  </rdfs:ConstraintProperty> 
 
  <rdfs:ConstraintProperty rdf:ID="implementedAs"> 
    <rdfs:label xml:lang="en">implemented as</rdfs:label> 
    <rdfs:label xml:lang="fr">implemente comme</rdfs:label> 
    <rdfs:domain rdf:resource="Rule"/> 
  </rdfs:ConstraintProperty> 
</rdf:RDF> 
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