

 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Agent Management Specification 5

 6

Document title FIPA Agent Management Specification
Document number SC00023J Document source FIPA TC Agent Management
Document status Standard Date of this status 2002/12/03
Supersedes FIPA00002, FIPA00017, FIPA00019
Contact fab@fipa.org
Change history See Informative Annex B — ChangeLog

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

© 1996-2002 Foundation for Intelligent Physical Agents 18
http://www.fipa.org/ 19
Geneva, Switzerland 20

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

ii

Foreword 21

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 22
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-23
based applications. This occurs through open collaboration among its member organizations, which are companies and 24
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 25
and intends to contribute its results to the appropriate formal standards bodies where appropriate. 26

The members of FIPA are individually and collectively committed to open competition in the development of agent-27
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 28
partnership, governmental body or international organization without restriction. In particular, members are not bound to 29
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 30
participation in FIPA. 31

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 32
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 33
of specification may be found in the FIPA Document Policy [f-out-00000] and the FIPA Specifications Policy [f-out-34
00003]. A complete overview of the FIPA specifications and their current status may be found on the FIPA Web site. 35

FIPA is a non-profit association registered in Geneva, Switzerland. As of June 2002, the 56 members of FIPA 36
represented many countries worldwide. Further information about FIPA as an organization, membership information, 37
FIPA specifications and upcoming meetings may be found on the FIPA Web site at http://www.fipa.org/. 38

iii

Contents 39

1 Scope...1 40
2 Agent Management Reference Model ...2 41
3 Agent Naming ..4 42

3.1 Transport Addresses ..4 43
3.2 Name Resolution ..4 44

4 Agent Management Services...6 45
4.1 Directory Facilitator ..6 46

4.1.1 Overview ...6 47
4.1.2 Management Functions Supported by the Directory Facilitator ..6 48
4.1.3 Federated Directory Facilitators ..6 49

4.2 Agent Management System ...7 50
4.2.1 Overview ...7 51
4.2.2 Management Functions Supported by the Agent Management System...7 52

4.3 Message Transport Service ...8 53
5 Agent Platform...9 54

5.1 Agent Life Cycle ...9 55
5.2 Agent Registration ..10 56

5.2.1 Registration Lease Times ...11 57
6 Agent Management Ontology ..13 58

6.1 Object Descriptions ..13 59
6.1.1 Agent Identifier Description ...13 60
6.1.2 Directory Facilitator Agent Description..14 61
6.1.3 Service Description ...14 62
6.1.4 Search Constraints..15 63
6.1.5 Agent Management System Agent Description ..15 64
6.1.6 Agent Platform Description ...15 65
6.1.7 Agent Service Description...16 66
6.1.8 Property Template...16 67

6.2 Function Descriptions...16 68
6.2.1 Registration of an Object with an Agent..17 69
6.2.2 Deregistration of an Object with an Agent...17 70
6.2.3 Modification of an Object Registration with an Agent..17 71
6.2.4 Search for an Object Registration with an Agent ..17 72
6.2.5 Retrieve an Agent Platform Description ..19 73

6.3 Exceptions..19 74
6.3.1 Exception Selection...20 75
6.3.2 Exception Classes...20 76
6.3.3 Not Understood Exception Predicates ..20 77
6.3.4 Refusal Exception Propositions ..21 78
6.3.5 Failure Exception Propositions..21 79

7 Agent Management Content Language...22 80
8 References ..23 81
9 Informative Annex A — Dialogue Examples..24 82
10 Informative Annex B — ChangeLog...31 83

10.1 2001/10/03 - version H by FIPA Architecture Board...31 84
10.2 2002/11/01 - version I by TC X2S...31 85
10.3 2002/12/03 - version J by FIPA Architecture Board..32 86

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

 1

1 Scope 87

This document is part of the FIPA specifications covering agent management for inter-operable agents. This 88
specification incorporates and further enhances [FIPA00002] and [FIPA00067] represents a companion specification. 89
 90
This document contains specifications for agent management including agent management services, agent 91
management ontology and agent platform message transport. This document is primarily concerned with defining open 92
standard interfaces for accessing agent management services. The internal design and implementation of intelligent 93
agents and agent management infrastructure is not mandated by FIPA and is outside the scope of this specification. 94
 95
The document provides a series of examples to illustrate the agent management functions defined. 96
 97

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

2

2 Agent Management Reference Model 98

Agent management provides the normative framework within which FIPA agents exist and operate. It establishes the 99
logical reference model for the creation, registration, location, communication, migration and retirement of agents. 100
 101
The entities contained in the reference model (see Figure 1) are logical capability sets (that is, services) and do not 102
imply any physical configuration. Additionally, the implementation details of individual APs and agents are the design 103
choices of the individual agent system developers. 104
 105

Agent Platform

Agent Platform

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent

Software

Message Transport System

 106
 107

Figure 1: Agent Management Reference Model 108
 109
The agent management reference model consists of the following logical components1, each representing a capability 110
set (these can be combined in physical implementations of APs): 111
 112
• An agent is a computational process that implements the autonomous, communicating functionality of an 113

application. Agents communicate using an Agent Communication Language. An Agent is the fundamental actor on 114
an AP which combines one or more service capabilities, as published in a service description, into a unified and 115
integrated execution model. An agent must have at least one owner, for example, based on organisational affiliation 116
or human user ownership, and an agent must support at least one notion of identity. This notion of identity is the 117
Agent Identifier (AID) that labels an agent so that it may be distinguished unambiguously within the Agent Universe. 118
An agent may be registered at a number of transport addresses at which it can be contacted. 119

 120
• A Directory Facilitator (DF) is an optional component of the AP, but if it is present, it must be implemented as a 121

DF service (see Section 4.1). The DF provides yellow pages services to other agents. Agents may register their 122
services with the DF or query the DF to find out what services are offered by other agents. Multiple DFs may exist 123
within an AP and may be federated. The DF is a reification of the Agent Directory Service in [FIPA00001]. 124

 125
• An Agent Management System (AMS) is a mandatory component of the AP. The AMS exerts supervisory control 126

over access to and use of the AP. Only one AMS will exist in a single AP. The AMS maintains a directory of AIDs 127

1 The functionalities of these components are a specialization of the AA notion of Service [see FIPA00001].

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

3

which contain transport addresses (amongst other things) for agents registered with the AP. The AMS offers white 128
pages services to other agents. Each agent must register with an AMS in order to get a valid AID. The AMS is a 129
reification of the Agent Directory Service in [FIPA00001]. 130

 131
• An Message Transport Service (MTS) is the default communication method between agents on different APs (see 132

[FIPA00067]). 133
 134
• An Agent Platform (AP) provides the physical infrastructure in which agents can be deployed. The AP consists of 135

the machine(s), operating system, agent support software, FIPA agent management components (DF, AMS and 136
MTS) and agents. 137

 138
The internal design of an AP is an issue for agent system developers and is not a subject of standardisation within 139
FIPA. AP’s and the agents which are native to those APs, either by creation directly within or migration to the AP, 140
may use any proprietary method of inter-communication. 141
 142
It should be noted that the concept of an AP does not mean that all agents resident on an AP have to be co-located 143
on the same host computer. FIPA envisages a variety of different APs from single processes containing lightweight 144
agent threads, to fully distributed APs built around proprietary or open middleware standards. 145
 146
FIPA is concerned only with how communication is carried out between agents who are native to the AP and agents 147
outside the AP. Agents are free to exchange messages directly by any means that they can support. 148
 149

• Software describes all non-agent, executable collections of instructions accessible through an agent. Agents may 150
access software, for example, to add new services, acquire new communications protocols, acquire new security 151
protocols/algorithms, acquire new negotiation protocols, access tools which support migration, etc. 152

 153

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

4

3 Agent Naming 154

The FIPA agent naming reference model identifies an agent through an extensible collection of parameter-value pairs2, 155
called an Agent Identifier (AID). The extensible nature of an AID allows it to be augmented to accommodate other 156
requirements, such as social names, nick names, roles, etc. which can then be attached to services within the AP. An 157
AID comprises3 (see Section 6.1.1): 158
 159
• The name parameter, which is a globally unique identifier that can be used as a unique referring expression of the 160

agent. One of the simplest mechanisms is to construct it from the actual name of the agent and its home agent 161
platform address4 (HAP), separated by the @ character. This is a reification of the notion of an Agent Name from 162
[FIPA00001]. 163

 164
• The addresses parameter, which is a list of transport addresses where a message can be delivered (see Section 165

3.1). This is a reification of the notion of a Locator from [FIPA00001]. 166
 167
• The resolvers parameter, which is a list of name resolution service addresses (see Section 3.2). 168
 169
The parameter values of an AID can be edited or modified by an agent, for example, to update the sequence of name 170
resolution servers or transport addresses in an AID. However, the mandatory parameters can only be changed by the 171
agent to whom the AID belongs. AIDs are primarily intended to be used to identify agents inside the envelope of a 172
transport message, specifically within the to and from parameters (see [FIPA00067]). 173
 174
Two AIDs are considered to be equivalent if their name parameters are the same. 175
 176

3.1 Transport Addresses 177

A transport address is a physical address at which an agent can be contacted and is usually specific to a Message 178
Transport Protocol. A given agent may support many methods of communication and can put multiple transport address 179
values in the addresses parameter of an AID. 180
 181
The EBNF syntax of a transport addresses is the same as for a URL given in [RFC2396]. [FIPA00067] describes the 182
semantics of message delivery with regard to transport addresses. 183
 184

3.2 Name Resolution 185

Name resolution is a service that is provided by the AMS through the search function. The resolvers parameter of 186
the AID contains a sequence of AIDs at which the AID of the agent can ultimately be resolved into a transport address 187
or set of transport address. 188
 189
An example name resolution pattern might be: 190
 191
1. agent-a wishes to send a message to agent-b, whose AID is: 192
 193

(agent-identifier 194
 :name agent-b@bar.com 195
 :resolvers (sequence 196
 (agent-identifier 197
 :name ams@foo.com 198
 :addresses (sequence iiop://foo.com/acc)))) 199

 200

2 The name of additional parameters added to an AID and not defined by FIPA, must be prefixed with “X-” to avoid name conflict with any future
extension of the standard.
3 The name of an agent is immutable and cannot be changed during the lifetime of the agent; the other parameters in the AID of an agent can be
changed.
4 The HAP of an agent is the AP on which the agent was created.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

5

 and agent-a wishes to know additional transport addresses that have been given for agent-b. 201
 202
2. Therefore, agent-a can send a search request to the first agent specified in the resolvers parameter which is 203

typically an AMS. In this example, the AMS at foo.com. 204
 205
3. If the AMS at foo.com has agent-b registered with it, then it returns a result message containing the AMS agent 206

description of agent-b; if not, then a failed message is returned. 207
 208
4. Upon receipt of the result message, agent-a can extract the agent-identifier parameter of the ams-209

agent-description and then extract the addresses parameter of this to determine the transport address(es) 210
of agent-b. 211

 212
5. agent-a can now send a message to agent-b by inserting the addresses parameter into the AID of agent-b. 213
 214

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

6

4 Agent Management Services 215

4.1 Directory Facilitator 216

4.1.1 Overview 217

A DF is a component of an AP that provides a yellow pages directory service to agents; . It is the trusted, benign 218
custodian of the agent directory. It is trusted in the sense that it must strive to maintain an accurate, complete and 219
timely list of agents. It is benign in the sense that it must provide the most current information about agents in its 220
directory on a non-discriminatory basis to all authorised agents. At least one DF must be resident on each AP (the 221
default DF). However, an AP may support any number of DFs and DFs may register with each other to form 222
federations. 223
 224
Every agent that wishes to publicise its services to other agents, should find an appropriate DF and request the 225
registration of its agent description. There is no intended future commitment or obligation on the part of the registering 226
agent implied in the act of registering. For example, an agent can refuse a request for a service which is advertised 227
through a DF. Additionally, the DF cannot guarantee the validity or accuracy of the information that has been registered 228
with it, neither can it control the life cycle of any agent. An object description must be supplied containing values for all 229
of the mandatory parameters of the description. It may also supply optional and private parameters, containing non-230
FIPA standardised information that an agent developer might want included in the directory. The deregistration 231
function has the consequence that there is no longer a commitment on behalf of the DF to broker information relating to 232
that agent. At any time, and for any reason, the agent may request the DF to modify its agent description. 233
 234
An agent may search in order to request information from a DF. The DF does not guarantee the validity of the 235
information provided in response to a search request, since the DF does not place any restrictions on the information 236
that can be registered with it. However, the DF may restrict access to information in its directory and will verify all 237
access permissions for agents which attempt to inform it of agent state changes. 238
 239
The default DF on an AP has a reserved AID of: 240
 241
(agent-identifier 242
 :name df@hap_name5 243
 :addresses (sequence hap_transport_address)) 244
 245

4.1.2 Management Functions Supported by the Directory Facilitator 246

In order to access the directory of agent descriptions managed by the DF, each DF must be able to perform the 247
following functions, when defined on the domain of objects of type df-agent-description in compliance with the 248
semantics described in Section 6.1.2: 249
 250
• register 251
 252
• deregister 253
 254
• modify 255
 256
• search 257
 258

4.1.3 Federated Directory Facilitators 259

The DF encompasses a search mechanism that searches first locally and then extends the search to other DFs, if 260
allowed. The default search mechanism is assumed to be a depth-first search across DFs. For specific purposes, 261
optional constraints can be used as described in Section 6.1.4 such as the number of answers (max-results). The 262

5 The hap_name should be replaced with the name of the HAP that is published in the ap-description.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

7

federation of DFs for extending searches can be achieved by DFs registering with each other with fipa-df as the 263
value of the type parameter in the service-description. 264
 265
When a DF receives a search action, it may determine whether it needs to propagate this search to other DFs that are 266
registered with it6. It should only forward searches where the value of the max-depth parameter is greater than 1 and 267
where it has not received a prior search with the same search-id parameter. If it does forward the search action, then 268
it must use the following rules: 269
 270
1. It must not change the value of the search-id parameter when it propagates the search and the value of all 271

search-id parameters should be globally unique. 272
 273
2. Before propagation, it should decrement the value of the max-depth parameter by 1. 274
 275

4.2 Agent Management System 276

4.2.1 Overview 277

An AMS is a mandatory component of the AP and only one AMS will exist in a single AP. The AMS is responsible for 278
managing the operation of an AP, such as the creation of agents, the deletion of agents and overseeing the migration of 279
agents to and from the AP (if agent mobility is supported by the AP). Since different APs have different capabilities, the 280
AMS can be queried to obtain a description of its AP. A life cycle is associated with each agent on the AP (see Section 281
5.1) which is maintained by the AMS. 282
 283
The AMS represents the managing authority of an AP and if the AP spans multiple machines, then the AMS represents 284
the authority across all machines. An AMS can request that an agent performs a specific management function, such as 285
quit (that is, terminate all execution on its AP) and has the authority to forcibly enforce the function if such a request is 286
ignored. 287
 288
The AMS maintains an index of all the agents that are currently resident on an AP, which includes the AID of agents. 289
Residency of an agent on the AP implies that the agent has been registered with the AMS. Each agent, in order to 290
comply with the FIPA reference model, must register with the AMS of its HAP. 291
 292
Agent descriptions can be later modified at any time and for any reason. Modification is restricted by authorisation of 293
the AMS. The life of an agent with an AP terminates with its deregistration from the AMS. After deregistration, the AID 294
of that agent can be removed by the directory and can be made available to other agents who should request it. 295
 296
Agent description can be searched with the AMS and access to the directory of ams-agent-descriptions is further 297
controlled by the AMS; no default policy is specified by this specification. The AMS is also the custodian of the AP 298
description that can be retrieved by requesting the action get-description. 299
 300
The AMS on an AP has a reserved AID of: 301
 302
(agent-identifier 303
 :name ams@hap_name7 304

:addresses (sequence hap_transport_address)) 305
 306
The name parameter of the AMS (ams@hap_name) is considered to be the Service Root of the AP (see [FIPA00001]). 307
 308

4.2.2 Management Functions Supported by the Agent Management System 309

An AMS must be able to perform the following functions, in compliance with the semantics described in Section 6.1.5 310
(the first four functions are defined within the scope of the AMS, only on the domain of objects of type ams-agent-311
description and the last on the domain of objects of type ap-description): 312

6 Some DFs may not support federated search, in which case the max-result, max-depth and search-id parameters have no effect.
7 The hap_name should be replaced with the name of the HAP that is published in the ap-description.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

8

 313
• register 314
 315
• deregister 316
 317
• modify 318
 319
• search 320
 321
• get-description 322
 323
In addition to the management functions exchanged between the AMS and agents on the AP, the AMS can instruct the 324
underlying AP to perform the following operations: 325
 326
• Suspend agent, 327
 328
• Terminate agent, 329
 330
• Create agent, 331
 332
• Resume agent execution, 333
 334
• Invoke agent, 335
 336
• Execute agent, and, 337
 338
• Resource management. 339
 340

4.3 Message Transport Service 341

The Message Transport Service (MTS) delivers messages between agents within an AP and to agents that are resident 342
on other APs. All FIPA agents have access to at least one MTS and only messages addressed to an agent can be sent 343
to the MTS. See [FIPA00067] for more information on the MTS. 344
 345

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

9

5 Agent Platform 346

5.1 Agent Life Cycle 347

FIPA agents exist physically on an AP and utilise the facilities offered by the AP for realising their functionalities. In this 348
context, an agent, as a physical software process, has a physical life cycle that has to be managed by the AP. This 349
section describes a possible life cycle that can be used to describe the states which it is believed are necessary and the 350
responsibilities of the AMS in these states. 351
 352
The life cycle of a FIPA agent is (see Figure 2): 353
 354
• AP Bounded 355

An agent is physically managed within an AP and the life cycle of a static agent is therefore always bounded to a 356
specific AP. 357

 358
• Application Independent 359

The life cycle model is independent from any application system and it defines only the states and the transitions of 360
the agent service in its life cycle. 361

 362
• Instance-Oriented 363

The agent described in the life cycle model is assumed to be an instance (that is, an agent which has unique name 364
and is executed independently). 365

 366
• Unique 367

Each agent has only one AP life cycle state at any time and within only one AP. 368
 369

Initiated

Waiting

Suspend

Resume

Invoke

Transit

Suspended

Active
Destroy

Wait

Wake Up

Execute

Move

Unknown

Create

Quit

 370
 371

Figure 2: Agent Life Cycle 372
 373
The followings are the responsibility that an AMS, on behalf of the AP, has with regard to message delivery in each 374
state of the life cycle of an agent: 375
 376
• Active 377

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

10

The MTS delivers messages to the agent as normal. 378
 379
• Initiated/Waiting/Suspended 380

The MTS either buffers messages until the agent returns to the active state or forwards messages to a new location 381
(if a forward is set for the agent). 382

 383
• Transit 384

The MTS either buffers messages until the agent becomes active (that is, the move function failed on the original 385
AP or the agent was successfully started on the destination AP) or forwards messages to a new location (if a 386
forward is set for the agent). Notice that only mobile agents can enter the Transit state. This ensures that a 387
stationary agent executes all of its instructions on the node where it was invoked. 388

 389
• Unknown 390

The MTS either buffers messages or rejects them, depending upon the policy of the MTS and the transport 391
requirements of the message. 392

 393
The state transitions of agents can be described as: 394
 395
• Create 396

The creation or installation of a new agent. 397
 398
• Invoke 399

The invocation of a new agent. 400
 401
• Destroy 402

The forceful termination of an agent. This can only be initiated by the AMS and cannot be ignored by the agent. 403
 404
• Quit 405

The graceful termination of an agent. This can be ignored by the agent. 406
 407
• Suspend 408

Puts an agent in a suspended state. This can be initiated by the agent or the AMS. 409
 410
• Resume 411

Brings the agent from a suspended state. This can only be initiated by the AMS. 412
 413

• Wait 414
Puts an agent in a waiting state. This can only be initiated by an agent. 415

 416
• Wake Up 417

Brings the agent from a waiting state. This can only be initiated by the AMS. 418
 419
The following two transitions are only used by mobile agents: 420
 421
• Move 422

Puts the agent in a transitory state. This can only be initiated by the agent. 423
 424
• Execute 425

Brings the agent from a transitory state. This can only be initiated by the AMS. 426
 427

5.2 Agent Registration 428

There are three ways in which an agent can be registered with an AMS: 429
 430
• The agent was created on the AP. 431

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

11

 432
• The agent migrated to the AP, for those APs which support agent mobility. 433
 434
• The agent explicitly registered with the AP. 435
 436
Agent registration involves registering an AID with the AMS. When an agent is either created or registers with an AP, 437
the agent is registered with the AMS, for example by using the register function. In the following example, an agent 438
called discovery-agent is registering with an AP located at foo.com. The agent discovery-agent was created on the AP 439
(that is, discovery-agent’s HAP) at bar.com and requests that the AMS registers it. 440
 441
For example: 442
 443
(request 444
 :sender 445
 (agent-identifier 446
 :name discovery-agent@bar.com 447
 :addresses (sequence iiop://bar.com/acc)) 448
 :receiver (set 449
 (agent-identifier 450
 :name ams@foo.com 451
 :addresses (sequence iiop://foo.com/acc))) 452
 :ontology fipa-agent-management 453
 :language fipa-sl0 454
 :protocol fipa-request 455
 :content 456
 "((action 457
 (agent-identifier 458
 :name ams@foo.com 459
 :addresses (sequence iiop://foo.com/acc)) 460
 (register 461
 (:ams-description 462
 :name 463
 (agent-identifier 464
 :name discovery-agent@bar.com 465
 :addresses (sequence iiop://bar.com/acc)) 466
 ...)))") 467
 468
It should be noted that the addresses parameter of the AID represents the transport address(es) that the agent would 469
like any messages directed to (see [FIPA00067] for information on how the MTS deals with this). In the above example, 470
the agent discovery-agent registers itself with the foo.com AP but by virtue of specifying a different transport address 471
in the addresses parameter of its AID, messages that arrive at foo.com will be forwarded to bar.com. 472
 473

5.2.1 Registration Lease Times 474

To enable the DF to manage a maintainable number of registrations over a long period of time, the DF may implement 475
lease times using the lease-time parameter of a df-agent-description. A lease time is either a duration of time, 476
such as 3 hours, or an absolute time, such as 08:00 26-Jul-2002, at which point a registration made by an agent can be 477
removed from the DF registration database. 478
 479
When an agent wishes to register with a DF, it can specify a lease time which is how long it would like the registration to 480
be kept. If this lease time is okay for the DF, then it will accept the registration as usual and the value of the lease-481
time parameter in the content of the inform reply will be the same. Consequently, when the lease time expires, the 482
registration will be silently removed by the DF. On the other hand, if the lease time is not acceptable to the DF, then the 483
DF can include a new lease time as the value of the lease-time parameter in the content of the inform reply. This is 484
the case when an agent does not specify a lease time in its registration. 485
 486

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

12

If the DF does not support lease times, it will notify to the requesting agent that its registration is valid for an unlimited 487
time by removing this parameter in the content of the inform reply, in fact the default lease-time is defined to be 488
unlimited. 489
 490
For example, and agent may register the following df-agent-description: 491
 492
(request 493
 ... 494
 :content 495
 "((action 496
 (agent-identifier 497

 :name df@foo.com 498
 :addresses (sequence iiop://foo.com/acc)) 499
 (register 500

 (df-agent-description 501
 :name 502
 (agent-identifier 503
 :name dummy@foo.com 504
 :addresses (sequence iiop://foo.com/acc)) 505

 :protocols fipa-request 506
 :ontologies (set fipa-agent-management) 507
 :languages (set fipa-sl0) 508
 :lease-time +00000000T600000000T 509
 ...") 510

 511
Then if the DF agrees to this lease time, it will reply with and inform which contains the same value for the lease-time 512
parameter: 513
 514
(inform 515
 ... 516
 :content 517
 "((done 518
 (action 519
 (agent-identifier 520
 :name df@foo.com 521
 :addresses (sequence iiop://foo.com/acc)) 522
 (register 523
 (df-agent-description 524
 :name 525
 (agent-identifier 526
 :name dummy@foo.com 527
 :addresses (sequence iiop://foo.com/acc)) 528
 :protocols (set fipa-request application-protocol) 529
 :ontologies (set meeting-scheduler) 530
 :languages (set fipa-sl0 kif) 531

 :lease-time +00000000T600000000T 532
 ...") 533

 534
If an agent wishes to renew a lease time, then it can use the modify action to specify a new value for the lease-time 535
parameter. The verification of this lease time goes through the same procedure mentioned in the last paragraph: if it is 536
okay, then the value of the lease-time parameter in the content of the inform reply will be the same, if it is not okay, 537
the value of the lease-time parameter in the content of the inform reply will be a new value which is acceptable to 538
the DF. 539
 540

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

13

6 Agent Management Ontology 541

6.1 Object Descriptions 542

This section describes a set of frames that represent the classes of objects in the domain of discourse within the 543
framework of the fipa-agent-management ontology. The closure of symbols of this ontology can be obtained from 544
[FIPA00067] that specifies additional set of frames of this ontology. 545
 546
This ontology does not specify any specific positional order to encode the parameters of the objects. Therefore, it is 547
required to encode objects in SL by specifying both the parameter name and the parameter value (see Section 3.6 of 548
[FIPA00008]). 549
 550
The following terms are used to describe the objects of the domain: 551
 552
• Frame. This is the mandatory name of this entity that must be used to represent each instance of this class. 553
 554
• Ontology. This is the name of the ontology, whose domain of discourse includes the parameters described in the 555

table. 556
 557
• Parameter. This is the mandatory name of a parameter of this frame. 558
 559
• Description. This is a natural language description of the semantics of each parameter. 560
 561
• Presence. This indicates whether each parameter is mandatory or optional. 562
 563
• Type. This is the type of the values of the parameter: Integer, Word, String, URL, Term, Set or Sequence. 564
 565
• Reserved Values. This is a list of FIPA-defined constants that can assume values for this parameter. 566
 567

6.1.1 Agent Identifier Description 568

This type of object represents the identification of the agent. The addresses parameter and the name resolution 569
mechanism (see Section 3.2), is a reification of the notion of Locator from [FIPA00001]. See also Section 3.3.7 in FIPA 570
Agent Message Transport Service [FIPA00067] specifications. 571
 572
Frame
Ontology

agent-identifier
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The symbolic name of the agent. Mandatory word df@hap_name

ams@hap_name
addresses A sequence of ordered transport

addresses where the agent can
be contacted. The order implies a
preference relation of the agent
to receive messages over that
address.

Optional Sequence of url

resolvers A sequence of ordered AIDs
where name resolution services
for the agent can be contacted.
The order in the sequence
implies a preference in the list of
resolvers.

Optional Sequence of agent-
identifier

 573

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

14

6.1.2 Directory Facilitator Agent Description 574

This type of object represents the description that can be registered with the DF service. This is a reification of the 575
Agent Directory Entry from [FIPA00001]. 576
 577
Frame
Ontology

df-agent-description
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The identifier of the agent. Optional agent-identifier8
services A list of services supported by

this agent.
Optional Set of

service-
description

protocols A list of interaction protocols
supported by the agent.

Optional Set of string See [FIPA00025]

ontologies A list of ontologies known by the
agent.

Optional Set of string fipa-agent-
management

languages A list of content languages
known by the agent.

Optional Set of string fipa-sl
fipa-sl0
fipa-sl1
fipa-sl2

lease-time The duration or time at which
the lease for this registration will
expire9.

Optional datetime10

 578

6.1.3 Service Description 579

This type of object represents the description of each service registered with the DF. 580
 581
Frame
Ontology

service-description
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The name of the service. Optional string
type The type of the service. Optional string fipa-df11

fipa-ams
protocols A list of interaction protocols

supported by the service.
Optional Set of string

ontologies A list of ontologies supported by
the service.

Optional Set of string fipa-agent-
management

languages A list of content languages
supported by the service.

Optional Set of string

ownership The owner of the service Optional string
properties A list of properties that

discriminate the service.
Optional Set of property

 582

8 A valid df-agent-description must contain at least one AID to comply with the minimum constraints of an Agent Directory Entry from
[FIPA00001], except when searching, when no AID need be present.
9 The default value for a lease time is assumed to be unlimited.
10 It is recommended that the value of the lease-time parameter is specified as time duration rather than in absolute time, unless it can be
guaranteed that the clocks between the sender and the DF are synchronised.
11 These reserved values denote agents that provide the DF or AMS services as defined Section 4.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

15

6.1.4 Search Constraints 583

This type of object represents a set of constraints to limit the function of searching within a directory. 584
 585
Frame
Ontology

search-constraints
fipa-agent-management

Parameter Description Presence Type Reserved Values
max-depth The maximum depth of

propagation of the search to
federated directories12. A
negative value indicates that the
sender agent is willing to allow
the search to propagate across
all DFs.

Optional integer

max-
results

The maximum number of
results to return for the search13.
A negative value indicates that
the sender agent is willing to
receive all available results.

Optional integer

search-id A globally unique identifier for a
search.

Optional string

 586

6.1.5 Agent Management System Agent Description 587

This type of object represents the description of each service registered with the AMS. This is a reification of the Agent 588
Directory Entry from [FIPA00001]. 589
 590
Frame
Ontology

ams-agent-description
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The identifier of the agent. Optional agent-identifier14
ownership The owner of the agent. Optional string
state The life cycle state of the agent. Optional string initiated

active
suspended
waiting
transit

 591

6.1.6 Agent Platform Description 592

Frame
Ontology

ap-description
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The name of the AP. Mandatory string
ap-
services

The set of services provided by
this AP to the resident agents.

Optional Set of ap-service

 593

12 The default value for max-depth is 0.
13 The default value for max-results is 1.
14 A valid ams-agent-description must contain at least one AID to comply with the minimum constraints of an Agent Directory Entry from
[FIPA00001], except when searching, when no AID need be present.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

16

6.1.7 Agent Service Description 594

Frame
Ontology

ap-service
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The name of the AP Service. Mandatory string
type The type of the AP Service. Mandatory string fipa.mtp.*
addresses A list of the addresses of the

service.
Mandatory Sequence of url

 595

6.1.8 Property Template 596

This is a special object that is useful for specifying parameter/value pairs. 597
 598
Frame
Ontology

property
fipa-agent-management

Parameter Description Presence Type Reserved Values
name The name of the property. Mandatory string
value The value of the property Mandatory term

 599

6.2 Function Descriptions 600

The following tables define usage and semantics of the functions that are part of the fipa-agent-management 601
ontology and that are supported by the agent management services and agents on the AP. 602
 603
This ontology does not specify any specific positional order to encode the parameters of the objects. Therefore, it is 604
required to encode objects in SL by specifying both the parameter name and the parameter value (see Section 3.6 of 605
[FIPA00008]). 606
 607
The following terms are used to describe the functions of the fipa-agent-management domain: 608
 609
• Function. This is the symbol that identifies the function in the ontology. 610
 611
• Ontology. This is the name of the ontology, whose domain of discourse includes the function described in the 612

table. 613
 614
• Supported by. This is the type of agent that supports this function. 615
 616
• Description. This is a natural language description of the semantics of the function. 617
 618
• Domain. This indicates the domain over which the function is defined. The arguments passed to the function must 619

belong to the set identified by the domain. 620
 621
• Range. This indicates the range to which the function maps the symbols of the domain. The result of the function is 622

a symbol belonging to the set identified by the range. 623
 624
• Arity. This indicates the number of arguments that a function takes. If a function can take an arbitrary number of 625

arguments, then its arity is undefined. 626
 627

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

17

6.2.1 Registration of an Object with an Agent 628

Function register

Ontology fipa-agent-management

Supported by DF and AMS
Description The execution of this function has the effect of registering a new object into the knowledge base

of the executing agent. The DF or AMS description supplied must include a valid AID.
Domain df-agent-description / ams-agent-description
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 1

 629

6.2.2 Deregistration of an Object with an Agent 630

Function deregister

Ontology fipa-agent-management

Supported by DF and AMS
Description An agent may deregister an object in order to remove all of its parameters from a directory. The

DF or AMS description supplied must include a valid AID.
Domain df-agent-description / ams-agent-description
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 1

 631

6.2.3 Modification of an Object Registration with an Agent 632

Function modify

Ontology fipa-agent-management

Supported by DF and AMS
Description An agent may make a modification in order to change its object registration with another agent.

The argument of a modify function will replace the existing object description stored within the
executing agent. The DF or AMS description supplied must include a valid AID.

Domain df-agent-description / ams-agent-description
Range The execution of this function results in a change of the state, but it has no explicit result.

Therefore there is no range set.
Arity 1

 633

6.2.4 Search for an Object Registration with an Agent 634

Function search

Ontology fipa-agent-management

Supported by DF and AMS
Description An agent may search for an object template in order to request information from an agent, in

particular from a DF or an AMS. A successful search can return one or more agent descriptions
that satisfy the search criteria and a null set is returned where no agent entries satisfy the search
criteria. The DF or AMS description supplied must include a valid AID.

Domain df-agent-description / ams-agent-description ×15 search-constraints
Range Set of objects. In particular, a set of df-agent-descriptions (for the DF) and a set of ams-

agent-descriptions (for the AMS).

15 Where × is Cartesian product.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

18

Arity 2
 635

6.2.4.1 Matching Criterion 636
The search action defined in this ontology mandates the implementation of the following matching criterion in order to 637
determine the set of objects that satisfy the search criteria. 638
 639
The first thing to note about the matching operation is that the search action receives, as its first argument, an object 640
description that evaluates to a structured object that will be used as an object template during the execution of the 641
search action. In the following explanation, the expressions parameter template and value template are used to denote 642
a parameter of the object template, and the value of the parameter of the object template, respectively. 643
 644
A registered object matches an object template if: 645
 646
1. The class name of the object (that is, the object type) is the same as the class name of the object description 647

template, and, 648
 649
2. Each parameter of the object template is matched by a parameter of the object description. 650
 651
A parameter matches a parameter template if the parameter name is the same as the template parameter name, and 652
its value matches the value template. 653
 654
Since the value of a parameter is a term, the rules for a term to match another term template must be given. Before, it 655
must be acknowledged that the values of the parameters of descriptions kept by the AMS or by the DF can only be 656
either a constant, set, sequence (see [FIPA00008]) or other object descriptions (for example, a service-657
description). 658
 659
The search action evaluates functional expressions before the object template is matched against the descriptions 660
kept by the AMS or by the DF. This means that if the value of a parameter of an object description is a functional term 661
(for example, (plus 2 3)), then what is seen by the matching process is the result of evaluating the functional term 662
within the context of the receiving agent. A constant matches a constant template if they are equal. 663
 664
Informally, a sequence matches a sequence template if the elements of the sequence template are matched by 665
elements of the sequence appearing in the same order. Formally, the following recursive rules apply: 666
 667
1. An empty sequence matches an empty sequence, and, 668
 669
2. The sequence (cons x sequence1)16 matches the sequence template (cons y sequence2) if: 670
 671

• x matches y and sequence1 matches sequence2, or, 672
 673
• sequence1 matches (cons y sequence2). 674

 675
Finally, a set matches a set template if each element of the set template is matched by an element of the set template. 676
Notice that it is possible that the same element of the set matches more than one element of the set template. 677
 678

6.2.4.2 Matching Example 679
The following DF agent description: 680
 681
(df-agent-description 682
 :name 683
 (agent-identifier 684

16 cons is the usual LISP function that it is here used to describe the semantics of the process. The function (which must not be considered part of
the fipa-agent-management ontology) takes two arguments, the second of which must be a list. It returns a list where the first argument has
been inserted as the first element of its second argument. Example: (cons x (sequence y z)) evaluates to (sequence x y z).

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

19

 :name cameraproxy1@foo.com 685
 :addresses (sequence iiop://foo.com/acc)) 686
 :services (set 687
 (service-description 688
 :name description-delivery-1 689
 :type description-delivery 690
 :ontologies (set traffic-surveillance-domain) 691
 :properties (set 692
 (property 693
 :name camera-id 694
 :value camera1) 695
 (property 696
 :name baud-rate 697
 :value 1))) 698
 (service-description 699
 :name agent-feedback-information-1 700
 :type agent-feedback-information 701
 :ontologies (set traffic-surveillance-domain) 702
 :properties (set 703
 (property 704
 :name camera-id 705
 :value camera1)))) 706
 :protocols (set fipa-request fipa-query) 707
 :ontologies (set traffic-surveillance-domain fipa-agent-management) 708
 :languages (set fipa-sl)) 709
 710
will match the following DF agent description template: 711
 712
(df-agent-description 713
 :services (set 714
 (service-description 715
 :type description-delivery 716
 :ontologies (set traffic-surveillance-domain) 717
 :properties (set 718
 (property 719
 :name camera-id 720
 :value camera1)) 721
 :languages (set fipa-sl fipa-sl1)) 722
 723
Notice that several parameters of the df-agent-description were omitted in the df-agent-description 724
template. Furthermore, not all elements of set-valued parameters of the df-agent-description were specified and, 725
when the elements of a set were themselves descriptions, the corresponding object description templates are also 726
partial descriptions. 727
 728

6.2.5 Retrieve an Agent Platform Description 729

Function get-description

Ontology fipa-agent-management

Supported by AMS
Description An agent can make a query in order to request the platform profile of an AP from an AMS.
Domain None
Range ap-description

Arity 0
 730

6.3 Exceptions 731

The normal pattern of interactions between application agents and management agents follow the form of the fipa-732
request interaction protocol (see [FIPA00026]). Under some circumstances, an exception can be generated, for 733
example, when an AID that has been already registered is re-registered. These exceptions are represented as 734

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

20

propositions that evaluate to true under the exceptional circumstances. This section describes the standard set of 735
predicates (defined over a set of arguments) and propositional symbols in the domain of discourse of the fipa-736
agent-management ontology. 737
 738

6.3.1 Exception Selection 739

The following rules are adopted to select the appropriate communicative act that will be returned in when a 740
management action causes an exception: 741
 742
• If the communicative act is not understood by the receiving agent, then the replied communicative act is not-743

understood. 744
 745
• If the requested action is not supported by the receiving agent, then the communicative act is refuse. 746
 747
• If the requested action is supported by the receiving agent but the sending agent is not authorised to request the 748

function, then the communicative act is refuse. 749
 750
• If the requested function is supported by the receiving agent and the client agent is authorised to request the 751

function but the function is syntactically or semantically ill-specified, then the communicative act is refuse. 752
 753
• In all the other cases the receiving agent sends to the sending agent a communicative act of type agree. 754

Subsequently if any condition arises that prevents the receiving agent from successfully completing the requested 755
function, then the communicative act is failure. 756

 757

6.3.2 Exception Classes 758

There are four main classes or exceptions that can be generated in response to a management action request: 759
 760
• unsupported: The communicative act and the content has been understood by the receiving agent, but it is not 761

supported. 762
 763
• unrecognised: The content has not been understood by the receiving agent. 764
 765
• unexpected: The content has been understood by the receiving agent, but it includes something that was 766

unexpected. 767
 768
• missing: The content has been understood by the receiving agent, but something that was expected is missing. 769
 770

6.3.3 Not Understood Exception Predicates 771

Communicative Act
Ontology

not-understood
fipa-agent-management

Predicate Symbol Arguments Description
unsupported-act string The receiving agent does not support the

specific communicative act; the string
identifies the unsupported communicative act.

unexpected-act string The receiving agent supports the specified
communicative act, but it is out of context; the
string identifies the unexpected
communicative act.

unsupported-value string The receiving agent does not support the
value of a message parameter; the string
identifies the message parameter name.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

21

unrecognised-value string The receiving agent cannot recognise the
value of a message parameter; the string
identifies the message parameter name.

 772

6.3.4 Refusal Exception Propositions 773

Communicative Act
Ontology

refuse
fipa-agent-management

Predicate symbol Arguments Description
unauthorised The sending agent is not authorised to

perform the function.
unsupported-function string The receiving agent does not support the

function; the string identifies the unsupported
function name.

missing-argument string A mandatory function argument is missing; the
string identifies the missing function argument
name.

unexpected-argument string A mandatory function argument is present
which is not required; the string identifies the
function argument that is unexpected.

unexpected-argument-count The number of function arguments is
incorrect.

missing-parameter string string A mandatory parameter is missing; the first
string represents the object name and the
second string represents the missing
parameter name.

unexpected-parameter string string The receiving agent does not support the
parameter; the first string represents the
function name and the second string
represents the unsupported parameter name.

unrecognised-parameter-
value

string string The receiving agent cannot recognise the
value of a parameter; the first string
represents the object name and the second
string represents the parameter name of the
unrecognised parameter value.

 774

6.3.5 Failure Exception Propositions 775

Communicative Act
Ontology

failure
fipa-agent-management

Predicate symbol Arguments Description
already-registered The sending agent is already registered with

the receiving agent.
not-registered The sending agent is not registered with the

receiving agent.
internal-error string An internal error occurred; the string identifies

the internal error.
 776

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

22

7 Agent Management Content Language 777

Agent Management uses fipa-sl0 as a content language which is defined in [FIPA00008]. 778
 779

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

23

8 References 780

[FIPA00001] FIPA Abstract Architecture Specification. Foundation for Intelligent Physical Agents, 2000. 781
http://www.fipa.org/specs/fipa00001/ 782

[FIPA00008] FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents, 2000. 783
http://www.fipa.org/specs/fipa00008/ 784

[FIPA00025] FIPA Interaction Protocol Library Specification. Foundation for Intelligent Physical Agents, 2000. 785
http://www.fipa.org/specs/fipa00025/ 786

[FIPA00026] FIPA Request Interaction Protocol Specification. Foundation for Intelligent Physical Agents, 2000. 787
http://www.fipa.org/specs/fipa00026/ 788

[FIPA00067] FIPA Agent Message Transport Service Specification. Foundation for Intelligent Physical Agents, 2000. 789
http://www.fipa.org/specs/fipa00067/ 790

[FIPA00079] FIPA Agent Software Integration Specification. Foundation for Intelligent Physical Agents, 2000. 791
http://www.fipa.org/specs/fipa00079/ 792

[RFC2396] Uniform Resource Identifiers: Generic Syntax. Request for Comments, 1992. 793
http://www.ietf.org/rfc/rfc2396.txt 794

 795

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

24

9 Informative Annex A — Dialogue Examples 796

1. The agent dummy is created and it registers with the AMS of its home AP: 797

(request 798
 :sender 799
 (agent-identifier 800
 :name dummy@foo.com 801
 :addresses (sequence iiop://foo.com/acc)) 802
 :receiver (set 803
 (agent-identifier 804
 :name ams@foo.com 805
 :addresses (sequence iiop://foo.com/acc))) 806
 :language fipa-sl0 807
 :protocol fipa-request 808
 :ontology fipa-agent-management 809
 :content 810
 "((action 811
 (agent-identifier 812
 :name ams@foo.com 813
 :addresses (sequence iiop://foo.com/acc)) 814
 (register 815
 (ams-agent-description 816
 :name 817
 (agent-identifier 818
 :name dummy@foo.com 819
 :addresses (sequence iiop://foo.com/acc)) 820
 :state active))))") 821

 822
2. The AMS agrees and then informs dummy of the successful execution of the action: 823
 824

(agree 825
 :sender 826
 (agent-identifier 827
 :name ams@foo.com 828
 :addresses (sequence iiop://foo.com/acc)) 829
 :receiver (set 830
 (agent-identifier 831
 :name dummy@foo.com 832
 :addresses (sequence iiop://foo.com/acc))) 833
 :language fipa-sl0 834
 :protocol fipa-request 835
 :ontology fipa-agent-management 836
 :content 837
 "((action 838
 (agent-identifier 839
 :name ams@foo.com 840
 :addresses (sequence iiop://foo.com/acc)) 841
 (register 842
 (ams-agent-description 843
 :name 844
 (agent-identifier 845
 :name dummy@foo.com 846
 :addresses (sequence iiop://foo.com/acc)) 847
 :state active))) 848
 true)") 849
 850
(inform 851
 :sender 852
 (agent-identifier 853
 :name ams@foo.com 854
 :addresses (sequence iiop://foo.com/acc)) 855

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

25

 :receiver (set 856
 (agent-identifier 857
 :name dummy@foo.com 858
 :addresses (sequence iiop://foo.com/acc))) 859
 :language fipa-sl0 860
 :protocol fipa-request 861
 :ontology fipa-agent-management 862
 :content 863
 "((done 864
 (action 865
 (agent-identifier 866
 :name ams@foo.com 867
 :addresses (sequence iiop://foo.com/acc)) 868
 (register 869
 (ams-agent-description 870
 :name 871
 (agent-identifier 872
 :name dummy@foo.com 873
 :addresses (sequence iiop://foo.com/acc)) 874
 :state active)))))") 875

 876
3. Next, dummy registers its services with the default DF of the AP: 877
 878

(request 879
 :sender 880
 (agent-identifier 881
 :name dummy@foo.com 882
 :addresses (sequence iiop://foo.com/acc)) 883
 :receiver (set 884
 (agent-identifier 885
 :name df@foo.com 886
 :addresses (sequence iiop://foo.com/acc))) 887
 :language fipa-sl0 888
 :protocol fipa-request 889
 :ontology fipa-agent-management 890
 :content 891
 "((action 892
 (agent-identifier 893
 :name df@foo.com 894
 :addresses (sequence iiop://foo.com/acc)) 895
 (register 896
 (df-agent-description 897
 :name 898
 (agent-identifier 899
 :name dummy@foo.com 900
 :addresses (sequence iiop://foo.com/acc)) 901
 :protocols (set fipa-request application-protocol) 902
 :ontologies (set meeting-scheduler) 903
 :languages (set fipa-sl0 kif) 904
 :services (set 905
 (service-description 906
 :name profiling 907
 :type user-profiling 908
 :ontologies (set meeting-scheduler) 909
 :properties (set 910
 (property 911
 :name learning-algorithm 912
 :value bbn) 913
 (property 914
 :name max-nodes 915
 :value 10000000)))))))))") 916

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

26

4. The AMS agrees and then informs dummy of the successful execution of the action: 917
 918

(agree 919
 :sender 920
 (agent-identifier 921
 :name df@foo.com 922
 :addresses (sequence iiop://foo.com/acc)) 923
 :receiver (set 924
 (agent-identifier 925
 :name dummy@foo.com 926
 :addresses (sequence iiop://foo.com/acc))) 927
 :language fipa-sl0 928
 :protocol fipa-request 929
 :ontology fipa-agent-management 930
 :content 931
 "((action 932
 (agent-identifier 933
 :name df@foo.com 934
 :addresses (sequence iiop://foo.com/acc) 935
 (register 936
 (df-agent-description 937
 :name 938
 (agent-identifier 939
 :name dummy@foo.com 940
 :addresses (sequence iiop://foo.com/acc)) 941
 :protocols (set fipa-request application-protocol) 942
 :ontologies (set meeting-scheduler) 943
 :languages (set fipa-sl0 kif) 944
 :services (set 945
 (service-description 946
 :name profiling 947
 :type user-profiling 948
 :ontologies (set meeting-scheduler) 949
 :properties (set 950
 (property 951
 :name learning-algorithm 952
 :value bbn) 953
 (property 954
 :name max-nodes 955
 :value 10000000))))))) 956
 true)") 957
 958
(inform 959
 :sender 960
 (agent-identifier 961
 :name df@foo.com 962
 :addresses (sequence iiop://foo.com/acc)) 963
 :receiver (set 964
 (agent-identifier 965
 :name dummy@foo.com 966
 :addresses (sequence iiop://foo.com/acc))) 967
 :language fipa-sl0 968
 :protocol fipa-request 969
 :ontology fipa-agent-management 970
 :content 971
 "((done 972
 (action 973
 (agent-identifier 974
 :name df@foo.com 975
 :addresses (sequence iiop://foo.com/acc)) 976
 (register 977
 (df-agent-description 978
 :name 979
 (agent-identifier 980

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

27

 :name dummy@foo.com 981
 :addresses (sequence iiop://foo.com/acc)) 982
 :protocols (set fipa-request application-protocol) 983
 :ontologies (set meeting-scheduler) 984
 :languages (set fipa-sl0 kif) 985
 :services (set 986
 (service-description 987
 :name profiling 988
 :type user-profiling 989
 :ontologies (set meeting-scheduler) 990
 :properties (set 991
 (property 992
 :name learning-algorithm 993
 :value bbn) 994
 (property 995
 :name max-nodes 996
 :value 10000000))))))))") 997

 998
5. Then, dummy searches with the DF for a list of meeting scheduler agents: 999
 1000

(request 1001
 :sender 1002
 (agent-identifier 1003
 :name dummy@foo.com 1004
 :addresses (sequence iiop://foo.com/acc)) 1005
 :receiver (set 1006
 (agent-identifier 1007
 :name df@foo.com 1008
 :addresses (sequence iiop://foo.com/acc))) 1009
 :language fipa-sl0 1010
 :protocol fipa-request 1011
 :ontology fipa-agent-management 1012
 :content 1013
 "((action 1014
 (agent-identifier 1015
 :name df@foo.com 1016
 :addresses (sequence iiop://foo.com/acc)) 1017
 (search 1018
 (df-agent-description 1019
 :ontologies (set meeting-scheduler) 1020
 :languages (set fipa-sl0 kif) 1021
 :services (set 1022
 (service-description 1023
 :name profiling 1024
 :type meeting-scheduler-service))) 1025
 (search-constraints 1026
 :min-depth 2))))") 1027
 1028
(agree 1029
 :sender 1030
 (agent-identifier 1031
 :name df@foo.com 1032
 :addresses (sequence iiop://foo.com/acc)) 1033
 :receiver (set 1034
 (agent-identifier 1035
 :name dummy@foo.com 1036
 :addresses (sequence iiop://foo.com/acc))) 1037
 :language fipa-sl0 1038
 :protocol fipa-request 1039
 :ontology fipa-agent-management 1040
 :content 1041
 "((action 1042
 (agent-identifier 1043

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

28

 :name df@foo.com 1044
 :addresses (sequence iiop://foo.com/acc)) 1045
 (search 1046
 (df-agent-description 1047
 :ontologies (set meeting-scheduler) 1048
 :languages (set fipa-sl0 kif) 1049
 :services (set 1050
 (service-description 1051
 :name profiling 1052
 :type meeting-scheduler-service)) 1053
 (search-constraint :max-depth 2)))) 1054
 true)") 1055
 1056
(inform 1057
 :sender 1058
 (agent-identifier 1059
 :name df@foo.com 1060
 :addresses (sequence iiop://foo.com/acc)) 1061
 :receiver (set 1062
 (agent-identifier 1063
 :name dummy@foo.com 1064
 :addresses (sequence iiop://foo.com/acc))) 1065
 :language fipa-sl0 1066
 :protocol fipa-request 1067
 :ontology fipa-agent-management 1068
 :content 1069
 "((result 1070
 (action 1071
 (agent-identifier 1072
 :name df@foo.com 1073
 :addresses (sequence iiop://foo.com/acc)) 1074
 (search 1075
 (df-agent-description 1076
 :ontologies (set meeting-scheduler) 1077
 :languages (set fipa-sl0 kif) 1078
 :services (set 1079
 (service-description 1080
 :name profiling 1081
 :type meeting-scheduler-service)) 1082
 (search-constraint :max-depth 2)))) 1083
 (set 1084
 (df-agent-description 1085
 :name 1086
 (agent-identifier 1087
 :name scheduler-agent@foo.com 1088
 :addresses (sequence iiop://foo.com/acc)) 1089
 :ontologies (set meeting-scheduler fipa-agent-management) 1090
 :languages (set fipa-sl0 fipa-sl1 kif) 1091
 :services (set 1092
 (service-description 1093
 :name profiling 1094
 :type meeting-scheduler-service) 1095
 (service-description 1096
 :name profiling 1097
 :type user-profiling-service))))))") 1098
 1099

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

29

6. Now dummy tries to modify the description of scheduler-agent with the DF, but the DF refuses because dummy is 1100
not authorised: 1101

 1102
(request 1103
 :sender 1104
 (agent-identifier 1105
 :name dummy@foo.com 1106
 :addresses (sequence iiop://foo.com/acc)) 1107
 :receiver (set 1108
 (agent-identifier 1109
 :name df@foo.com 1110
 :addresses (sequence iiop://foo.com/acc))) 1111
 :language fipa-sl0 1112
 :protocol fipa-request 1113
 :ontology fipa-agent-management 1114
 :content 1115
 "((action 1116
 (agent-identifier 1117
 :name df@foo.com 1118
 :addresses (sequence (iiop://foo.com/acc)) 1119
 (modify 1120
 (df-agent-description 1121
 :name 1122
 (agent-identifier 1123
 :name scheduler-agent@foo.com 1124
 :addresses (sequence iiop://foo.com/acc)) 1125
 :ontologies (set meeting-scheduler) 1126
 :languages (set fipa-sl0 kif) 1127
 :services (set 1128
 (service-description 1129
 :name profiling 1130
 :type meeting-scheduler-service))))))") 1131
 1132
(refuse 1133
 :sender 1134
 (agent-identifier 1135
 :name df@foo.com 1136
 :addresses (sequence iiop://foo.com/acc)) 1137
 :receiver (set 1138
 (agent-identifier 1139
 :name dummy@foo.com 1140
 :addresses (sequence iiop://foo.com/acc))) 1141
 :language fipa-sl0 1142
 :protocol fipa-request 1143
 :ontology fipa-agent-management 1144
 :content 1145
 "((action 1146
 (agent-identifier 1147
 :name df@foo.com 1148
 :addresses (sequence iiop://foo.com/acc)) 1149
 (modify 1150
 (df-agent-description 1151
 :name 1152
 (agent-identifier 1153
 :name scheduler-agent@foo.com 1154
 :addresses (sequence iiop://foo.com/acc)) 1155
 :ontologies (set meeting-scheduler) 1156
 :languages (set fipa-sl0 kif) 1157
 :services (set 1158
 (service-description 1159
 :name profiling 1160
 :type meeting-scheduler-service))))) 1161
 unauthorised)") 1162

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

30

7. Finally, dummy tries to deregister its description with the DF, but the message is ill-formed and the DF does not 1163
understand (because the DF does not understand the propose performative): 1164

 1165
(propose 1166
 :sender 1167
 (agent-identifier 1168
 :name dummy@foo.com 1169
 :addresses (sequence iiop://foo.com/acc)) 1170
 :receiver (set 1171
 (agent-identifier 1172
 :name df@foo.com 1173
 :addresses (sequence iiop://foo.com/acc))) 1174
 :language fipa-sl0 1175
 :protocol fipa-request 1176
 :ontology fipa-agent-management 1177
 :content 1178
 "((action 1179
 (agent-identifier 1180
 :name df@foo.com 1181
 :addresses (sequence iiop://foo.com/acc)) 1182
 (deregister 1183
 (df-agent-description 1184
 :name 1185
 (agent-identifier 1186
 :name dummy@foo.com 1187
 :addresses (sequence iiop://foo.com/acc))))))") 1188
 1189
(not-understood 1190
 :sender 1191
 (agent-identifier 1192
 :name df@foo.com 1193
 :addresses (sequence iiop://foo.com/acc)) 1194
 :receiver (set 1195
 (agent-identifier 1196
 :name dummy@foo.com 1197
 :addresses (sequence iiop://foo.com/acc))) 1198
 :language fipa-sl0 1199
 :protocol fipa-request 1200
 :ontology fipa-agent-management 1201
 :content 1202
 "((propose 1203
 :sender 1204
 (agent-identifier 1205
 :name dummy@foo.com 1206
 :addresses (sequence iiop://foo.com/acc)) 1207
 :receiver (set 1208
 (agent-identifier 1209
 :name df@foo.com 1210
 :addresses (sequence iiop://foo.com/acc))) 1211
 :language fipa-sl0 1212
 :protocol fipa-request 1213
 :ontology fipa-agent-management 1214
 :content 1215
 \""((action 1216
 (agent-identifier 1217
 :name df@foo.com 1218
 :addresses (sequence iiop://foo.com/acc)) 1219
 (deregister 1220
 (df-agent-description 1221
 :name 1222
 (agent-identifier 1223
 :name dummy@foo.com 1224
 :addresses (sequence iiop://foo.com/acc)))))))\"" 1225
 (unsupported-act propose)))") 1226

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

31

10 Informative Annex B — ChangeLog 1227

10.1 2001/10/03 - version H by FIPA Architecture Board 1228

Page 24, line 825: Changed incorrect reference from AMS to DF 1229
 1230

10.2 2002/11/01 - version I by TC X2S 1231

Entire document: Removed all leading : from parameter names 1232
Entire document: Changed all ontology terms to lowercase 1233
Entire document: Various typo changes to all examples 1234
Entire document: Changed references of hap to hap_name 1235
Entire document: Fixed syntax of the examples by adding extra parenthesis in the content 1236
Page 2, line 105: Added a footnote linking agent management services to the Abstract Architecture notion of 1237

service 1238
Page 2, lines 108-116: Added a new definition for agent which is compatible with [FIPA00001] 1239
Page 2, line 118: Removed the requirement that the DF is a mandatory component of the AP 1240
Page 2, line 120: Added a link between the DF and the Agent Directory Service from [FIPA00001] 1241
Page 3, line 125: Added a link between the AMS and the Agent Directory Service from [FIPA00001] 1242
Page 3, line 143: Removed obsolete reference to dynamic registration 1243
Page 4, line 151: Restructured section on Agent Naming to list all components of an AID and cross-reference 1244

with equivalents in [FIPA00001] 1245
Page 4, line 153: Added a sentence describing AID equivalence 1246
Page 6, line 215: Removed the requirement that the DF is a mandatory component of the AP 1247
Page 6, line 260: Changed incorrect reference to df-search-result to max-results 1248
Page 6, line 261: Added text on limiting the propagation of federated searches 1249
Page 7, lines 265-266: Removed obsolete reference to dynamic registration 1250
Page 7, lines 278-280: Removed sentences describing the requirements that the AMS must check all MTS message 1251

sends and receives 1252
Page 7, line 297: Added a link between the name parameter of the AMS and the Service Root from 1253

[FIPA00001] 1254
Page 8, line 331: Removed section on Mandatory Functions Supported by Agents (specifically quit) 1255
Page 9, line 345: Added an explanatory sentence to the agent life cycle description 1256
Page 10, lines 414, 427: Removed incorrect reference to [FIPA00005] 1257
Page 11, lines 429-431: Removed obsolete reference to dynamic registration 1258
Page 11, lines 433-435: Removed obsolete references to dynamic registration 1259
Page 11, line 469: Added a section explaining registration lease times 1260
Page 12, line 472: Added a note that references [FIPA00067] for the closure of fipa-agent-management 1261

ontology 1262
Page 13, lines 498, 502: Modified the names of the following parameters: protocols, ontologies, languages 1263
Page 13, line 493: Added a link between the addresses parameter and the Locator from [FIPA00001] 1264
Page 13, line 497: Added a link between the df-agent-description and the Agent Directory Entry from 1265

[FIPA00001] 1266
Page 13, line 498: Added a footnote requiring at least one AID to be present, except when searching 1267
Page 13, line 498: Changed the plurality of the protocol, ontology and language parameters 1268
Page 13, line 498: Added a new parameter, lease-time, to the df-agent-description 1269
Page 13, line 498: Added a footnote explaining the suggested value of lease-time as a time duration 1270
Page 13, line 498: Added a footnote explaining the default lease time value 1271
Page 13, line 502: Changed the plurality of the protocol, ontology and language parameters 1272
Page 14, line 506: Added a note on negative values for max-depth and max-results 1273
Page 14, line 506: Added a search-id parameter to search-constraints 1274
Page 14, line 509: Added a link between the ams-agent-description and the Agent Directory Entry from 1275

[FIPA00001] 1276
Page 14, Line 510: Added a footnote requiring at least one AID to be present, except when searching 1277

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Agent Management

32

Page 14, line 512: Removed mobility parameter from ap-description 1278
Page 14, line 512: Removed dynamic parameter from ap-description 1279
Page 14, line 512: Changed name of transport-profile parameter to ap-service 1280
Page 14, line 512: Changed the plurality of the address parameter 1281
Page 15, line 521: Added note on how to encode objects in SL 1282
Page 14, line 548: Modified search action to handle both ams-agent-description and df-agent-1283

description 1284
Page 17, line 588: Removed the incorrect word ‘template’ at the end of the sentence 1285
Page 17, line 609: Changed 1MHZ to 1 in example 1286
Page 18, line 642: Removed quit function 1287
Page 18, lines 647-649: Changed the exception model from predicates which return true to propositions that 1288

evaluate to true 1289
 1290

10.3 2002/12/03 - version J by FIPA Architecture Board 1291

Entire document: Promoted to Standard status 1292
 1293

